Signal-on Protein Detection via Dye Translocation between Aptamer and Quantum Dot.
نویسندگان
چکیده
A unique interaction between the cyanine dye and negatively charged quantum dot is used to construct a signal-on biaptameric quantum dot (QD) Förster resonance energy transfer (FRET) beacon for protein detection and distinct aptamer characterization. The beacon comprises a pair of aptamers, one intercalated with the cyanine dye (YOYO-3) and the other conjugated to a negatively charged, carboxyl-QD. When the target protein is present, structural folding and sandwich association of the two aptamers take place. As a consequence, YOYO-3 is displaced from the folded aptamer and transferred to the unblocked QD surface to yield a target concentration-dependent FRET signal. As a proof-of-principle, we demonstrate the detection of thrombin ranging from nanomolar to submicromolar concentrations and confirm the dye translocation using cylindrical illumination confocal spectroscopy (CICS). The proposed beacon provides a simple, rapid, signal-on FRET detection for protein as well as a potential platform for distinct aptamer screening.
منابع مشابه
Applicability of the Dendrimer-quantum Dot (Den-QD) Bioconjugate as a Novel Nanocomposite for Signal Amplification in the Fabrication of Cocaine Aptasensor
A selective aptasensor was developed using the electrochemical transduction method for the ultrasensitive detection of cocaine. In this method, dendrimer-quantum dot (Den-QD) bioconjugate was utilized as a specific nanocomposite to efficiently fabricate the aptasensor. CdTe QD, which carries highly significant properties, was immobilized on the surface of a glassy carbon electrode (GCE), and po...
متن کاملRobust, specific ratiometric biosensing using a copper-free clicked quantum dot-DNA aptamer sensor
(2013) Robust, specific ratiometric biosensing using a copper-free clicked quantum dot-DNA aptamer sensor. 5 We report herein the successful preparation of a compact, functional CdSe/ZnS core/shell quantum dot (QD)-DNA conjugate via the highly efficient copper-free " click chemistry " (CFCC) between a dihydro-lipoic acid-polyethylene glycol-azide (DHLA-PEG-N 3) capped QD and a cyclooctyne modif...
متن کاملA novel aptasensor for the ultra-sensitive detection of adenosine triphosphate via aptamer/quantum dot based resonance energy transfer.
We designed a novel aptamer based biosensor (aptasensor) for ultrasensitive detection of adenosine triphosphate (ATP) through resonance energy transfer (RET). The ATP aptamer was modified with Cy3 at the 3' end, and a green quantum dot (525) was attached to the 5' end of its complementary sequence respectively. The ATP aptamer and its complementary sequence could assemble into a duplex structur...
متن کاملRobust and specific ratiometric biosensing using a copper-free clicked quantum dot–DNA aptamer sensor† †Electronic supplementary information (ESI) available: Details on the synthesis, purification and characterisation of the DHLA–PEG600–N3, cyclooctyne–DNA, and QD–TBA20 conjugates as well as all supporting figures and tables. See DOI: 10.1039/c3nr02897fClick here for additional data file.
We report herein the successful preparation of a compact and functional CdSe-ZnS core-shell quantum dot (QD)-DNA conjugate via highly efficient copper-free "click chemistry" (CFCC) between a dihydro-lipoic acid-polyethylene glycol-azide (DHLA-PEG-N3) capped QD and a cyclooctyne modified DNA. This represents an excellent balance between the requirements of high sensitivity, robustness and specif...
متن کاملZn(II)-Coordinated Quantum Dot-FRET Nanosensors for the Detection of Protein Kinase Activity
We report a simple detection of protein kinase activity using Zn(II)-mediated fluorescent resonance energy transfer (FRET) between quantum dots (QDs) and dye-tethered peptides. With neither complex chemical ligands nor surface modification of QDs, Zn(II) was the only metal ion that enabled the phosphorylated peptides to be strongly attached on the carboxyl groups of the QD surface via metal coo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- ACS applied materials & interfaces
دوره 8 19 شماره
صفحات -
تاریخ انتشار 2016